INTERNET PROTOCOL & IP ADDRESS

INTERNET PROTOKOL

ip-address-with-mouse

Sejarah Perkembangan Internet Protokol

1969-1989

IMP  (Interface Message Processor) Adalah generasi pertama dari gateway yang saat ini dikenal sebagai router. Digunakan untuk interkoneksi peserta ke ARPANET (Advanced Research Project Agency Network) dari akhir 1960-an hingga 1989. Bisa dikatakan sebagai nenek moyang dari IP address, yang terdokumentasi dengan nama RFC  1 (request for command). Berkapasitas 5 Bit address. Ada sebuah varian dari IMP yang disebut TIP yang menghubungkan terminal dan bukan untuk jaringankcomputer. IMP digunakan di pusat ARPANET sampai akhirnya dihentikan 20 tahun kemudian tepatnya pada tahun 1989.

1977 – 1979

Dalam RFC 791 IP didefinisikan versi pertama yang digunakan sebagai Internet Protocol. RFC adalah sebuah memorandum yang diterbitkan oleh Internet Engineering Task Force (IETF) menjelaskan tentang metode, perilaku, penelitian, atau inovasi berlaku untuk kerja dari Internet dan system yang terhubung di Internet. Dan ternyata bukan versi 1 tapi versi 4!!, ini tentu saja mengartikan bahwa pada dasarnya protocol ini ada versi sebelumnya. Terlepas dari benar-benar ada atau tidaknya, IP dibuat saat fungsi-fungsinya terbagi dari TCP versi sebelumnya yang dikombinasikan antara fungsi TCP dan Fungsi IP. TCP berkembang melalui tiga versi sebelumnya dan terbagi dari TCP dan IP untuk versi keempat. Versi nomor 4 itu diaplikasikan untuk TCP maupun IP untuk konsistensinya. Meskipun dari namanya mengisyaratkan versi sebelumnya, namun IP versi 4 adalah yang pertama digunakan secara meluas pada TCP/IP yang modern.

1981 – sekarang

IPv4

Sebuah jenis pengalamatan jaringan yang digunakan dalam protocol jaringan TCP/IP untuk komunikasi antar node-nya, format alamat dalam Internet dinyatakan dalam nomor 32-bit (RFC1166) dan dibagi atas 4 kelompok dan setiap kelompoknya terdiri dari 8-bit atau octet, yang sekarang dinamakan Internet Protocol versi 4 yang masih digunakan sampai hari ini.

IPv5

Apa yang terjadi dengan IPv5? Jawabannya adalah tidak ada. sengaja dilewati untuk menghindari kebingungan. Masalah dengan versi 5 berhubungan dengan protokol TCP / IP eksperimental yang disebut Internet Protocol Streaming, yang awalnya didefinisikan dalam RFC 1190, Protokol ini bukanlah versi kelanjutan dari IPv4 melainkan dibuat sebagai pelengkap IP untuk membawa traffic percakapan suara dan konferensi dengan garansi delay dan bandwidth. Saya tidak mendapatkan informasi yang pasti untuk tahun awal dikembangkan, namun kalau mengacu dari RFC1190 itu adalah tahun 1990.

1995 –hingga saat ini

IPv6

Seiring dengan pertumbuhan Internet yang sangat pesat di seluruh dunia yang menyebabkan IPv4 dengan format 32-bit tidak bisa lagi menampung kebutuhan pengalamatan internet setelah jangka 20 tahun kedepan. Dari hasil riset  dan perhitungan pakar IETF menyebutkan dengan hanya 32-bit format address hanya bisa menampung kurang lebih 4 milliar host di dunia ini. Pada tahun 1992 IETF selaku komunitas terbuka Internet membuka diskusi untuk mengatasi masalah ini dengan mencari format IP generasi selanjutnya setelah IPv4, setelah  pembahasan yang panjang, baru pada tahun 1995 ditetapkan melalui RFC2460 IPv6 sebagai IP generasi berikutnya (Next generation yang biasa disebut IPng) yang dapat menampung sekitar 340 milliar trilliun bahkan lebih host address, bisa diibaratkan bila semua manusia di dunia ini membutuhkan IP maka IPv6 itu juga belum akan habis Pengembangan IPv6 ini sudah dilakukan banyak pihak diseluruh dunia seperti Internet Service Provider, Internet Exchange Point, militer, dan Universitas.

Di Indonesia sendiri sudah dialokasikan 17 prefix IPv6 untuk berbagai organisasi, mobile operator, IXP, dan ISP. Berdasarkan statistic dari badan pengembangan dan penyedia tunnel broker SixXS (www.sixxs.net) hingga saat ini yang aktif hanya 7 prefix dari 7 ISP (indo.net, Indosatnet serta CBN, pesatNET, dll).

Mengenai IP

         IP (Internet Protocol) adalah standard protokol dengan nomer STD 5. Standar ini juga termasuk untuk ICMP, dan IGMP. Spesifikasi untuk IP dapat dilihat di RFC 791, 950, 919, dan 992 dengan  update pada RFC 2474. IP Merupakan Protokol pada network layer pada model TCP/IP yang memiliki sifat dan perananan sebagai Connectionless, yakni setiap paket data yang dikirimkan pada suatu saat akan melalui rute secara independen. Paket IP atau datagram akan melalui rute yang ditentukan oleh setiap router yang dilewati oleh datagram tersebut. Hal ini memungkinkan keseluruhan datagram sampai di lokasi tujuan dalam urutan yang berbeda karena menempuh rute yang berbeda pula.

Suatu datagram bisa saja tidak sampai dengan selamat ke tujuan karena beberapa hal berikut:

  • Adanya bit error pada saat pentransmisian datagram pada suatu medium
  • Router yang dilewati mendiscard datagram,
  • karena terjadinya kongesti dan kekurangan ruang memori buffer
  • Putusnya rute ke tujuan,
  • untuk sementara waktu akibat adanya router yang down
  • Terjadinya kekacauan routing,
  • sehingga datagram mengalami looping

         IP juga didesain untuk dapat melewati berbagai media komunikasi yang memiliki karakteristik dan kecepatan yang berbeda-beda. Pada jaringan Ethernet, panjang satu datagram akan lebih besar dari panjang datagram pada jaringan publik yang menggunakan media jaringan telepon, atau pada jaringan wireless. Perbedaan ini semata-mata untuk mencapai throughput yang baik pada setiap media. Pada umumnya, semakin cepat kemampuan transfer data pada media tersebut, semakin besar panjang datagram maksimum yang digunakan. Akibat dari perbedaan ini, datagram IP dapat mengalami fragmentasi ketika berpindah dari media kecepatan tinggi ke kecepatan rendah misalnya dari LAN Ethernet 10 Mbps ke leased line menggunakan Point-to-Point Protocol dengan kecepatan 64 kbps. Pada router/host penerima, datagram yang ter-fragmen ini harus disatukan kembali sebelum diteruskan ke router berikutnya, atau ke lapisan transport pada host tujuan. Hal ini menambah waktu pemrosesan pada router dan menyebabkan delay. Seluruh sifat yang diuraikan pada di atas adalah akibat adanya sisi efisiensi protokol yang dikorbankan sebagai konsekuensi dari keunggulan protokol IP.

Keunggulan ini berupa kemampuan menggabungkan berbagai media komunikasi dengan karakteristik yang berbeda-beda, fleksibel dengan perkembangan jaringan, dapat merubah routing secara otomatis jika suatu rute mengalami kegagalan, dsb. Misalnya, untuk dapat merubah routing secara dinamis, dipilih mekanisme routing yang ditentukan oleh kondisi jaringan dan elemen-elemen jaringan router. Selain itu, proses routing juga harus dilakukan untuk setiap datagram, tidak hanya pada permulaan hubungan. Marilah kita perhatikan struktur header dari protokol IP beserta fungsinya masing-masing. Setiap protokol memiliki bit-bit ekstra diluar informasi/data yang dibawanya.

Selain informasi, Bit Bit ini juga berfungsi sebagai alat kontrol. Dari sisi efisiensi, semakin besar jumlah bit ekstra ini, maka semakin kecil efisiensi komunikasi yang berjalan. Sebaliknya semakin kecil jumlah bit ekstra ini, semakin tinggi efisiensi komunikasi yang berjalan. Disinilah dilakukan trade-off antara keandalan datagram dan efisiensi. Sebagai contoh, agar datagram IP dapat menemukan tujuannya, diperlukan informasi tambahan yang harus dicantumkan pada header ini.

Layanan yang ditawarkan oleh Protokol IP

  • IP menawarkan layanan sebagai protokol antar jaringan (inter-network), karena itulah IP juga sering disebut sebagai protokol yang bersifat routable. Header IP mengandung informasi yang dibutuhkan untuk menentukan rute paket, yang mencakup alamat IP sumber (source IP address) dan alamat IP tujuan (destination IP address). Anatomi alamat IP terbagi menjadi dua bagian, yakni alamat jaringan (network address) dan alamat node (node address/host address). Penyampaian paket antar jaringan (umumnya disebut sebagai proses routing), dimungkinkan karena adanya alamat jaringan tujuan dalam alamat IP. Selain itu, IP juga mengizinkan pembuatan sebuah jaringan yang cukup besar, yang disebut sebagai IP internetwork, yang terdiri atas dua atau lebih jaringan yang dihubungkan dengan menggunakan router berbasis IP.
  • IP mendukung banyak protokol klien, karena memang IP merupakan “kurir” pembawa data yang dikirimkan oleh protokol-protokol lapisan yang lebih tinggi dibandingkan dengannya. Protokol IP dapat membawa beberapa protokol lapisan tinggi yang berbeda-beda, tapi setiap paket IP hanya dapat mengandung data dari satu buah protokol dari banyak protokol tersebut dalam satu waktu. Karena setiap paket dapat membawa satu buah paket dari beberapa paket data, maka harus ada cara yang digunakan untuk mengidikasikan protokol lapisan tinggi dari paket data yang dikirimkan sehingga dapat diteruskan kepada protokol lapisan tinggi yang sesuai pada sisi penerima. Mengingat klien dan server selalu menggunakan protokol yang sama untuk sebuah data yang saling dipertukarkan, maka setiap paket tidak harus mengindikasikan sumber dan tujuan yang terpisah. Contoh dari protokol-protokol lapisan yang lebih tinggi dibandingkan IP adalah Internet Control Management Protocol (ICMP), Internet Group Management Protocol (IGMP), User Datagram Protocol (UDP), dan Transmission Control Protocol (TCP).
  • IP mengirimkan data dalam bentuk datagram, karena memang IP hanya menyediakan layanan pengiriman data secara connectionless serta tidak andal (unreliable) kepada protokol-protokol yang berada lebih tinggi dibandingkan dengan protokol IP. Pengirimkan connectionless, berarti tidak perlu ada negosiasi koneksi (handshaking) sebelum mengirimkan data dan tidak ada koneksi yang harus dibuat atau dipelihara dalam lapisan ini. Unreliable, berarti IP akan mengirimkan paket tanpa proses pengurutan dan tanpa acknowledgment ketika pihak yang dituju telah dapat diraih. IP hanya akan melakukan pengiriman sekali kirim saja untuk menyampaikan paket-paket kepada hop selanjutnya atau tujuan akhir (teknik seperti ini disebut sebagai “best effort delivery”). Keandalan data bukan merupakan tugas dari protokol IP, tapi merupakan protokol yang berada pada lapisan yang lebih tinggi, seperti halnya protokol TCP.
  • Bersifat independen dari lapisan antarmuka jaringan (lapisan pertama dalam DARPA Reference Model), karena memang IP didesain agar mendukung banyak komputer dan antarmuka jaringan. IP bersifat independen terhadap atribut lapisan fisik, seperti halnya pengabelan, pensinyalan, dan bit rate. Selain itu, IP juga bersifat independen terhadap atribut lapisan data link seperti halnya mekanisme Media access control (MAC), pengalamatan MAC, serta ukuran frame terbesar. IP menggunakan skema pengalamatannya sendiri, yang disebut sebagai “IP address“, yang merupakan bilangan 32-bit dan independen terhadap skema pengalamatan yang digunakan dalam lapisan antarmuka jaringan.
  • Untuk mendukung ukuran frame terbesar yang dimiliki oleh teknologi lapisan antarmuka jaringan yang berbeda-beda, IP dapat melakukan pemecahan terhadap paket data ke dalam beberapa fragmen sebelum diletakkan di atas sebuah saluran jaringan. Paket data tersebut akan dipecah ke dalam fragmen-fragmen yang memiliki ukuran maximum transmission unit (MTU) yang lebih rendah dibandingkan dengan ukuran datagram IP. Proses ini dinamakan dengan fragmentasi ([[Fragmentasi paket jaringan|fragmentation). Router atau host yang mengirimkan data akan memecah data yang hendak ditransmisikan, dan proses fragmentasi dapat berlangsung beberapa kali. Selanjutnya host yang dituju akan menyatukan kembali fragmen-fragmen tersebut menjadi paket data utuh, seperti halnya sebelum dipecah.
  • Dapat diperluas dengan menggunakan fitur IP Options dalam header IP. Fitur yang dapat ditambahkan contohnya adalah kemampuan untuk menentukan jalur yang harus diikuti oleh datagram IP melalui sebuah internetwork IP.

Datagram IP

Paket-paket data dalam protokol IP dikirimkan dalam bentuk datagram. Sebuah datagram IP terdiri atas header IP dan muatan IP (payload), sebagai berikut:

  • Header IP: Ukuran header IP bervariasi, yakni berukuran 20 hingga 60 byte, dalam penambahan 4-byte. Header IP menyediakan dukungan untuk memetakan jaringan (routing), identifikasi muatan IP, ukuran header IP dan datagram IP, dukungan fragmentasi, dan juga IP Options.
  • Muatan IP: Ukuran muatan IP juga bervariasi, yang berkisar dari 8 byte hingga 65515 byte.

Sebelum dikirimkan di dalam saluran jaringan, datagram IP akan “dibungkus” dengan header protokol lapisan antarmuka jaringan dan trailer-nya, untuk membuat sebuah frame jaringan.

Header IP

Header IP terdiri dari beberapa field yang akan di jelaskan seperti tabel berikut

Field Panjang Keterangan
Version 4 bit Digunakan untuk mengindikasikan versi dari header IP yang digunakan. Karena memiliki panjang 4 bit, maka terdapat 24=16 buah jenis nilai yang berbeda-beda, yang berkisar antara 0 hingga 15. Meskipun begitu hanya ada dua nilai yang bisa digunakan, yakni 4 dan 6, mengingat versi IP standar yang digunakan saat ini dalam jaringan dan Internet adalah versi 4 dan 6 merupakan singkatan dari versi selanjutnya (IPv6). Lihat situs web IANA untuk informasi mengenai field ini lebih lanjut.
Header length 4 bit Digunakan untuk mengindikasikan ukuran header IP. Karena memiliki panjang 4 bit, maka terdapat 24=16 buah jenis nilai yang berbeda-beda. Field header length ini mengindikasikan bilangan double-word 32-bit (blok 4-byte) di dalam header IP. Ukuran terkecilnya adalah 5 (0x05), yang menunjukkan ukuran terkecil dari header IP yakni 20 byte. Dengan jumlah maksimum dari IP Options, ukuran header IP maksimum adalah 60 byte, yang diindikasikan dengan nilai 15 (0x0F).
Type of Service (TOS) 8 bit Field ini digunakan untuk menentukan kualitas transmisi dari sebuah datagram IP. Ada dua jenis TOS yang didefinisikan, yakni pada RFC 791 dan RFC 2474. Hal ini akan dibahas pada seksi berikutnya.
Total Length 16 bit Merupakan panjang total dari datagram IP, yang mencakup header IP dan muatannya. Dengan menggunakan angka 16 bit, nilai maksimum yang dapat ditampung adalah 65535 byte. Untuk datagram IP yang memiliki ukuran maksimum, field ini memiliki nilai yang sama dengan nilai maximum transmission unit yang dimiliki oleh teknologi protokol lapisan antarmuka jaringan.
Identifier 16 bit Digunakan untuk mengidentifikasikan sebuah paket IP tertentu yang dikirimkan antara node sumber dan node tujuan. Host pengirim akan mengeset nilai dari field ini, dan field ini akan bertambah nilainya untuk datagram IP selanjutnya. Field ini digunakan untuk mengenali fragmen-fragmen sebuah datagram IP.
Flag 3 bit Berisi dua buah flag yang berisi apakah sebuah datagram IP mengalami fragmentasi atau tidak. Meski berisi tiga bit, ada dua jenis nilai yang mungkin, yakni apakah hendak memecah datagram IP ke dalam beberapa fragmen atau tidak.
Fragment Offset 13 bit Digunakan untuk mengidentifikasikan ofset di mana fragmen yang bersangkutan dimulai, dihitung dari permulaan muatan IP yang belum dipecah.
Time-to-Live (TTL) 8 bit Digunakan untuk mengidentifikasikan berapa banyak saluran jaringan di mana sebuah datagram IP dapat berjalan-jalan sebelum sebuah router mengabaikan datagram tersebut. Field ini pada awalnya ditujukan sebagai penghitung waktu, untuk mengidentifikasikan berapa lama (dalam detik) sebuah datagram IP boleh terdapat di dalam jaringan. Adalah router IP yang memantau nilai ini, yang akan berkurang setiap kali hinggap dalam router.
Protocol 8 bit Digunakan untuk mengidentifikasikan jenis protokol lapisan yang lebih tinggi yang dikandung oleh muatan IP. Field ini merupakan tanda eksplisit untuk protokol klien. Terdapat beberapa nilai dari field ini, seperti halnya nilai 1 (0x01) untuk ICMP, 6 (0x06) untuk TCP, dan 17 (0x11) untuk UDP (selengkapnya lihat di bawah). Field ini bertindak sebagai penanda multipleks (multiplex identifier), sehingga muatan IP pun dapat diteruskan ke protokol lapisan yang lebih tinggi saat diterima oleh node yang dituju.
Header Checksum 16 bit Field ini berguna hanya untuk melakukan pengecekan integritas terhadap header IP, sementara muatan IP sendiri tidak dimasukkan ke dalamnya, sehingga muatan IP harus memiliki checksum mereka sendiri untuk melakukan pengecekan integritas terhadap muatan IP. Host pengirim akan melakukan pengecekan checksum terhadap datagram IP yang dikirimkan. Setiap router yang berada di dalam jalur transmisi antara sumber dan tujuan akan melakukan verifikasi terhadap field ini sebelum memproses paket. Jika verifikasi dianggap gagal, router pun akan mengabaikan datagram IP tersebut.
Karena setiap router yang berada di dalam jalur transmisi antara sumber dan tujuan akan mengurangi nilai TTL, maka header checksum pun akan berubah setiap kali datagram tersebut hinggap di setiap router yang dilewati.
Pada saat menghitung checksum terhadap semua field di dalam header IP, nilai header checksum akan diset ke nilai 0.
Source IP Address 32 bit Mengandung alamat IP dari sumber host yang mengirimkan datagram IP tersebut, atau alamat IP dari Network Address Translator (NAT).
Destination IP Address 32 bit Mengandung alamat IP tujuan ke mana datagram IP tersebut akan disampaikan, atau yang dapat berupa alamat dari host atau NAT.
IP Options and Padding 32 bit [place holder]

Pengalamatan IP

Alamat  IP  merupakan  representasi  dari  32  bit  bilangan  unsigned  biner.  Ditampilkan  dalam bentuk desimal dengan titik. Contoh 10.252.102.23 merupakan contoh valid dari IP.

IP Address merupakan sarana yang digunakan agar paket data dapat mencapai tujuan. Di dalam Jaringan, pengiriman suatu paket data membutuhkan alamat sebagai identitas tujuan suatu data akan dikirimkan (Destination Address) dan berasal (Source Address).

Berdasrkan sumber wikipedia sistem pengalamatan IP terbagi menjadi 2,

1. IPV4

IPv4 adalah sebuah jenis pengalamatan jariringan yang digunakan di dalam protokol jaringan TCP/IP yang menggunakan protokol IP versi 4. IP versi ini memiliki keterbatasan yakni hanya mampu mengalamati sebanyak 4 miliar host komputer di seluruh dunia. Contoh alamat IPv4 adalah192.168.0.3. Pada IPv4 ada 3 jenis Kelas, tergantung dari besarnya bagian host, yaitu kelas A ( bagian host sepanjang 24 bit, IP address dapat diberikan pada16,7 juta host), kelas B ( bagian host sepanjang 16 bit = 65534 host) dan kelas C (bagian host sepanjang 8 bit= 254 host).

Administrator jaringan mengajukan permohonan jenis kelas berdasarkan skala jaringan yang dikelolanya. Konsep kelas ini memiliki keuntungan yaitu: pengelolaan rute informasi tidak memerlukan seluruh 32 bit tersebut, melainkan cukup hanya bagian jaringannya saja, sehingga besar informasi rute yang disimpan di router, menjadi kecil. Setelah address jaringan diperoleh, maka organisasi tersebut dapat secara bebas memberikan address bagian host pada masingmasing hostnya.

Pemberian alamat dalam internet mengikuti format IP address (RFC 1166). Alamat ini dinyatakan dengan 32 bit (bilangan 1 dan 0) yang dibagi atas 4 kelompok (setiap kelompok terdiri dari 8 bit atau oktet) dan tiap kelompok dipisahkan oleh sebuah tanda titik. Untuk memudahkan  pembacaan,  penulisan  alamat  dilakukan  dengan  angka  desimal,  misalnya 100.3.1.100 yang jika dinyatakan dalam binary menjadi 01100100.00000011.00000001.01100100.

Dari 32 bit ini berarti banyaknya jumlah maksimum alamat yang dapat dituliskan adalah 2 pangkat 32, atau 4.294.967.296 alamat. Format alamat ini terdiri dari 2 bagian, netid dan hostid. Netid sendiri menyatakan alamat jaringan sedangkan hostid menyatakan alamat lokal (host/router). Dari 32 bit ini, tidak boleh semuanya angka 0 atau 1 (0.0.0.0 digunakan untuk jaringan yang tidak dikenal dan 255.255.255.255 digunakan untuk broadcast). Dalam penerapannya, alamat internet ini diklasifikasikan ke dalam kelas (A-E).

Alasan klasifikasi ini antara lain :
1. Memudahkan sistem pengelolaan dan pengaturan alamat-alamat.

2. Memanfaatkan jumlah alamat yang ada secara optimum (tidak ada alamat yang terlewat).

3. Memudahkan pengorganisasian jaringan di seluruh dunia dengan membedakan jaringan tersebut termasuk kategori besar, menengah, atau kecil.

4.  Membedakan antara alamat untuk jaringan dan alamat untuk host/router.

Pada  tabel  dibawah  dijelaskan  mengenai  ketersediaan  IPv4  berdasarkan  data  dari  APNIC sampai akhir tahun 1999 yang lalu dan total IP yang sudah dialokasikan ke tiap – tiap negara di Asia Pasifik.

tabel

tabel alokasi IPv4

last

Gambar . Diagram alokasi ruang Ipv4 dalam tiap negara maju.

2. IPV6

Transisi IPv4 ke IPv6 merupakan fenomena yang tidak dapat dielakan oleh semua kalangan. Walaupun IPv4 tetap dapat digunakan, IPv6 memiliki versi design berbeda dan memiliki kegunaan lebih dibanding IPv4. Disertai dengan tumbuhnya inovasi-inovasi perangkat berteknologi, maka Negara-negara di dunia dituntut mampu bersaing atau setidaknya secara bertahap mulai untuk mengimplementasikan IPv6.Menurut   jurnal   Internet   Protocol, diperkirakan tak sampai tahun 2011, jatah alamat IP yang masih belum digunakan saat ini akan habis. Maka muncullah suatu metode peangalamatan baru yang dikenal dengan sebutan IPv6. Di Indonesia, salah satu penyedia jasa Internet, Indosat Mega Media (Indosat M2), sejak 2004 telah siap menyewakan jaringan IPv6 ini.
IPv6 merupakan metode pengalamatan IP yang perlahan-lahan mulai menggantikan IPv4. IPv6 digunakan sebagai pengalamatan karena keterbatasan jumlah IP yang dimiliki oleh IPv4, mengingat semakin bertambahnya perangkat berbasis IP saat ini. IPv6 atau Internet Protocol version 6 adalah protokol Internet terbaru yang merupakan pengembangan lebih lanjut dari protokol yang dipakai saat ini, IPv4 (Internet Protocol version 4). Pengalamatan IPv6 menggunakan 128-bit alamat yang jauh lebih banyak dibandingkan dengan pengalamatan 32-bit milik IPv4. Dengan kapasitas alamat IP yang sangat besar pada IPv6, setiap perangkat yang dapat terhubung ke Internet (komputer desktop, laptop, personal digital assistant, atau telepon seluler GPRS/3G) bisa memiliki alamat IP  yang tetap. Sehingga, cepat atau lambat setiap perangkat elektronik yang ada dapat terhubung dengan Internet melalui alamat IP yang unik. Protokol IPv6 ini memiliki beberapa fitur baru yang merupakan perbaikan dari IPv4,diantaranya :

Memiliki format header baru

Header pada IPv6 memiliki format baru yang didesain untuk menjaga agar overhead header minimum, dengan menghilangkan field-field yang tidak diperlukan serta beberapa field opsional yang ditempatkan setelah header IPv6. Header IPv6 sendiri besarnya adalah dua kali dari besar header dari IPv4.

Range alamat yang sangat besar

IPv6 memiliki 128-bit atau 16-byte untuk masing-masing alamat IP source dan destination. Sehingga secara logika IPv6 dapat menampung sekitar 3.4 x 1038 kemungkinan kombinasi alamat. Pengalamatan secara efisien  dan hierarkis serta  infrastruktur routing Alamat  global  dari  IPv6  yang  digunakan  pada  porsi  IPv6  di  Internet,  didesain  untuk menciptakan   infrastruktur   routing   yang   efisien,   hierarkis,   dan   mudah   dipahami   oleh pengembang.

• Konfigurasi pengalamatan secara stateless dan statefull

IPv6 mendukung konfigurasi pengalamatan secara statefull, seperti konfigurasi alamat menggunakan server DHCP, atau secara stateless yang tanpa menggunakan server DHCP. Pada konfigurasi kedua, host secara otomatis mengkonfigurasi dirinya sendiri dengan alamat IPv6 untuk link yang disebut dengan alamat link-lokal dan alamat yang diturunkan dari prefik yang ditransmisikan oleh router local.

•Built-in security

Dukungan terhadap IPsec memberikan dukungan terhadap keamanan jaringan dan menawarkan interoperabilitas antara implementasi IPv6 yang berbeda.

• Dukungan yang lebih baik dalam hal QoS

Pada header IPv6 terdapat trafik yang di identifikasi menggunakan field Flow Label, sehingga dukungan  QoS  dapat  tetap  diimplementasikan  meskipun  payload  paket  terenkripsi  melalui IPsec.

Protokol baru untuk interaksi node

Pada  IPv6  terdapat  Protokol  Neighbor  Discovery  yang  menggantikan  Address  Resolution Protokol.

•  EkstensibilitasIPv6  dapat  dengan  mudah  ditambahkan  fitur  baru  dengan  menambahkan header ekstensi setelah header IPv6.

Ukuran dari header ekstensi IPv6 ini hanya terbatasi oleh ukuran dari paket IPv6 itu sendiri.
 

Format IP Address

Pengalamatan IP Address harus unik dan mempunyai format dalam bilangan binary yang terdiri dari 32bit dan dibagi atas 4 kelompok 8bit bilangan binary (atau sering disebut dengan istilah oktal) bentuk ip address dapat dituliskan sebagai berikut :

 

              xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx

Notasi IP address dengan bilangan biner seperti ini susah untuk digunakan, sehingga sering ditulis dalam 4 bilangan desimal yang masing-masing dipisahkan oleh 4 buah titik yang lebih dikenal dengan “notasi desimal bertitik”. Setiapbilangan desimal merupakan nilai dari satu oktet  IP address.

Pembagian kelas IP Address

kelas iptabel pembagian kelas IP

1. Kelas A
IP address kelas A terdiri dari 8 bit untuk network ID dan sisanya 24 bit digunakan untuk host ID, sehingga IP address kelas A digunakan untuk jaringan dengan jumlah host yang sangat besar JJ. Pada bit pertama berikan angka 0 sampai dengan 127. (0-127)

Formatnya :
-Format : 0nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh

  • Bit pertama : 0
  • Panjang Network ID : 8 bit
  • Panjang Host ID : 24 bit
  • Byte pertama : 0 – 127
  • Jumlah : 126 kelas A (0 dan 127 dicadangkan)
  • Range IP : 1.xxx.xxx.xxx sampai 126.xxx.xxx.xxx
  • Jumlah IP : 16.777.214 IP address pada tiap kelas A

2. Kelas B
IP address kelas B terdiri dari 16 bit untuk network ID dan sisanya 16 bit digunakan untuk host ID, sehingga IP address kelas B digunakan untuk jaringan dengan jumlah host yang tidak terlalu besar. Pada 2 bit pertama berikan angka 10, sehingga bit awal IP tersebut mulai dari (128 – 191).

  • Format : 10nnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh
  • 2 bit pertama : 10
  • Panjang Network ID : 16 bit
  • Panjang Host ID : 16 bit
  • Byte pertama : 128 – 191
  • Jumlah : 16.384 kelas B
  • Range IP : 128.0.xxx.xxx sampai 191.155.xxx.xxx
  • Jumlah IP : 65.535 IP address pada tiap kelas B

3. Kelas C
Fungsi kelas C adalah untuk jaringan berukuran kecil.IP address kelas C terdiri dari 24 bit untuk network ID dan sisanya 8 bit digunakan untuk host ID, sehingga IP address kelas C digunakan untuk jaringan untuk ukuran kecil. Kelas C biasanya digunakan untuk jaringan Local Area Network atau LAN. Biasanya ini terdapat dalam Warnet-Warnet maupun sebuah sekolah. Pada 3 bit pertama berikan angka 110 sehingga bit awal IP tersebut mulai dari (192 – 223).

  • Format : 110nnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh
  • 3 bit pertama : 110
  • Panjang Network ID : 24 bit
  • Panjang Host ID : 8 bit
  • Byte pertama : 192 – 223
  • Jumlah : 2.097.152 kelas C
  • Range IP : 192.0.0.xxx sampai 223.255.255.xxx
  • Jumlah IP : 254 IP address pada tiap kelas C

4. Kelas D
Fungsi kelas D digunakan untuk keperluan multicasting dan tidak mengenal adanya Net-ID dan Host-ID

  • 4 Bit Pertama : 1110
  • Byte Inisial : 224 – 247

5. Kelas E
Fungsi kelas D adalah ini digunakan untuk keperluan Eksperimental

  • 4 Bit Pertama : 1111
  • Byte Inisial : 248 – 255

Daftar Pustaka :

http://id.wikipedia.org/wiki/Alamat_IP diakses 24 mei 2013

http://ariz-zone.blogspot.com/2012/03/pengertian-ip-addres-dns-gateway-subnet.html diakses 24 mei 2013

http://detective-103.blogspot.com/2013/05/pengertian-ip-address-dan-kelasnya.html diakses 24 mei 2013

http://my.opera.com/ziylland/blog/index.dml/tag/Pengertian%20IP%20adress%20&%20PROXY diakses 24 mei 2013

http://keharusan.wordpress.com/2013/03/24/ip-addres/

http://en.wikipedia.org/wiki/Internet_Protocol diakses 24 mei 2013

http://www.transiskom.com/2011/02/pengertian-ip-internet-protocol.html diakses 29 mei 2013

http://sahdan-share.blogspot.com/2013/05/sejarah-ip-address.html diakses 29 mei 2013

http://basobasri.wordpress.com/2010/02/07/pembagian-ip-address-kelas-a-b-c/ diakses 29 mei 2013

http://fikridesain.blogspot.com/2013/05/pembagian-kelas-ip-address.html diakses 29 mei 2013

heriyanto,fikri,PERBANDINGAN INTERNET PROTOKOL VERSI 4 DAN VERSI 6, FAKULTAS ILMU KOMPUTER UNIVERSITAS SRIWIJAYA. PALEMBANG.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s